Motile M142 Cheapo Linux Laptop Notes

I’ve been using Linux laptops for the past few years, most recently a very portable C302 Chromebook running GalliumOS that sadly stopped charging a while back and never recovered (definitely don’t recommend), and a slightly less portable Gigabyte Aero 14 that’s taken a beating, but keeps on ticking.

While the Aero still works fine, and it’s light for a gaming laptop (with a VR capable GTX 1060 GPU), at 2kg and with a massive power brick, it’s still heavier and bulkier than I’d prefer to travel with now that I rarely use the dGPU (which also makes external HDMI output a real pain). I was meaning to just wait for the new AMD Zen2 mobile chips (scheduled to be announced at CES in a couple weeks and with some great performance numbers leaking lately) early next year and seeing how any new laptops announced stack up against some of the strong Ice Lake options before buying a replacement laptop, but since I’ll be hitting the road again next month and the new AMD laptop models seemed unlikely to ship for a while (if the timing gap from last year’s models are anything to go by), and since there have been some crazy laptop deals lately, I decided to grab a dirt cheap last-gen AMD Ryzen laptop as a potential temporary placeholder on a lark and give it a spin. I’ve been pleasantly surprised so far.

I bought the Motile M142 (14″ FHD IPS/Ryzen 3500U/8GB RAM/256GB SATA SSD) for $300 (it seems to be bouncing up and down in price a bit; there’s also a Ryzen 3200U model that’s regularly been dropping to $200). It is a Walmart-only brand (Tongfang is the ODM), and besides being as light as most high-end ultrabooks at just over 1.1kg, it’s also surprisingly well built (it was also originally priced at $700 and has been subsequently discounted). Notebookcheck has a comprehensive review (there are some other discussions, reviews and videos online if you search for Motile M142), and it’s not the only ~$300 AMD Ryzen laptop available (it is the lightest, and the only real trade-off is that it is a single-channel memory device), but I thought I’d focus writing up some of the more Linux-specific aspects.

The TL;DR on it is that running Arch with the latest kernel (5.4.6), firmware (20191215.eefb5f7-1) and mesa (19.3.1), basically everything, from the keyboard (including backlight), trackpad (including gestures), wireless, sound, external HDMI output, screen brightness, webcam, and suspend, all just work. (Yes, I’m just as surprised as you are.)

Some more detailed notes:

  • I got the black version (more of an extremely dark grey) that looks pretty sharp (here’s a video of the silver version, and the black version), although the plastic on the keyboard does immediately start picking up some finger grease. My unit (manufactured in Sep 2019) had a slight imperfection on a corner but I didn’t feel like waiting for another 2-weeks to swap out what ultimately will be a somewhat disposable laptop.
  • As mentioned, this laptop is quite lightweight at 1.1kg (2.5lb), and it’s also thin, at 15mm thick (but still has gigabit ethernet (Realtek) with one of those neat flippy jacks). The screen bezels are also quite thin, which is a nice bonus, and reduces the overall footprint.
  • The screen is matte IPS, but not especially bright or color accurate (about 250nits, 62% sRGB), but it’s comfortable enough to use w/o any complaints. I’m currently using clight for automatic dimming/gamma adjustment and it works great with the webcam and geoclue2. Also no problem using arandr for external HDMI output, resolution switching, etc.
  • I booted into Windows when I got it just to give it a quick spin (the product code is blown into the BIOS so you can get that easily) and gave the included SSD a quick test (SATA3, and the expected ~450MB/s read and writes).
  • After that I cracked the laptop open. All you need to do is unscrew 6 fully exposed #00 screws to pop off the back, but one corner screw on mine was firmly stuck and stripped. I was still able to access what I needed and I swapped out the 1×1 AC Intel 3165 wireless card with an extra Intel AX200 I had lying around (the 3165 isn’t bad and is fully Linux compatible, but I was able to go from 270Mbps to 500Mbps in real-world AC transfers). There is a second M.2 slot, and I put an extra NVMe drive I had lying around for my Linux drive.
  • Probably the biggest caveat worth mentioning is it has a single SODIMM slot – you can upgrade the RAM, but it is single channel. There are also no BIOS options to speak of, you’ll be locked to 2400MHz on the RAM (interestingly, according to dmidecode, the 8GB stick of RAM included is actually rated at 2666, but running at 2400). The biggest impact of single channel memory is on gaming (GPU) performance, which can be 50% slower than a dual channel setup. If GPU performance is a concern, a refurbed HP 15-cw1063wm at about the same price is probably a better way to go (or something with a dGPU if you want to deal with that).
  • While this laptop has USB-C, like many in its class, it’s missing USB-C PD. This was a minor concern for me since I’ve been focused on minimizing power adapters/standardizing on USB-C for travel power, but I’m happy to report that since it uses a standard 19V/5.5mm barrel jack, it worked perfectly with a cheap 5.5mm to USB-C PD adapter cable I had, so if you have a USB-C PD charger you like already, then that’s all you need. It also charges without issue from my external USB-C PD capable power bank.
  • This laptop comes with a 47Wh battery, which is actually pretty great for it’s class (and better than all the similarly-priced alternatives). Out of the box, the laptop idled at around 12W. Running tlp I was able to get that down to about 8W. Surprisingly powertop --auto-tune was actually able to do better and I’m currently idling at about 6W (7-8W under light usage like right now). I’ll probably spend a bit more time tweaking power profiles (maybe using RyzenAdj to throttle to keep temps low), but it looks like right now I’m looking at about 6h of battery life under light usage. This is one aspect that hopefully the new Zen2 models can significantly improve.
  • Speaking of which, I haven’t played around much w/ ZenStates or RyzenAdj yet except to confirm they do work. The fan isn’t too distracting but it will spin up even during normal use at default settings (you could probably use RyzenAdj to keep temps below the fan curve – looks like it starts to spin up at ~42C. The cooling seems to be sufficient: if I use RyzenAdj to bump the temp limits up to 90C, it can sustain 3.2GHz clocks on all cores running stress at about 82C.
  • The screen hinge only goes to 160 degrees, but the laptop is light enough that I can still use a compact tablet stand to stand it up. When I’m working at a desk I tend to prefer that setup w/ a 60% keyboard and a real mouse.
  • The built-in keyboard is fine (nothing to write home about, but perfectly cromulent for typing – I’m writing this review on it) and some of the Fn keys work hardcoded (like the keyboard backlight controls) but the rest show up on xev. The trackpad is also fine (smooth enough and decently sized), and has the usual fidgety middle click support if you are able to click directly in the middle. Both are PS2 devices.
  • Sound works out of the box with pulseaudio/alsa, using AMD’s (Family 17h) built in audio controller. Speakers aren’t very good, but the headphone jack works fine/switches output like it should. Webcam works as well.

Here’s my inxi output for those curious:

  Host: thx Kernel: 5.4.5-arch1-1 x86_64 bits: 64 compiler: gcc 
  v: 9.2.0 Desktop: Openbox 3.6.1 Distro: Arch Linux 
  Type: Laptop System: MOTILE product: M142 v: Standard 
  serial: <filter> 
  Mobo: MOTILE model: PF4PU1F v: Standard serial: <filter> 
  UEFI: American Megatrends v: N.1.03 date: 08/26/2019 
  ID-1: BAT0 charge: 31.8 Wh condition: 46.7/46.7 Wh (100%) 
  model: standard status: Discharging 
  Topology: Quad Core 
  model: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx bits: 64 
  type: MT MCP arch: Zen+ rev: 1 L2 cache: 2048 KiB 
  flags: avx avx2 lm nx pae sse sse2 sse3 sse4_1 sse4_2 sse4a ssse3 svm bo
gomips: 33550 
  Speed: 1284 MHz min/max: 1400/2100 MHz Core speeds (MHz): 1: 1222 
  2: 1255 3: 1282 4: 1254 5: 1239 6: 1296 7: 1222 8: 1259 
  Device-1: AMD Picasso vendor: Tongfang Hongkong Limited 
  driver: amdgpu v: kernel bus ID: 04:00.0 
  Display: x11 server: X.Org 1.20.6 driver: modesetting unloaded: vesa 
  resolution: 1920x1080~60Hz 
  OpenGL: renderer: AMD RAVEN (DRM 3.35.0 5.4.5-arch1-1 LLVM 9.0.0) 
  v: 4.5 Mesa 19.3.1 direct render: Yes 
  Device-1: AMD Raven/Raven2/Fenghuang HDMI/DP Audio 
  vendor: Tongfang Hongkong Limited driver: snd_hda_intel v: kernel 
  bus ID: 04:00.1 
  Device-2: AMD Family 17h HD Audio vendor: Tongfang Hongkong Limited 
  driver: snd_hda_intel v: kernel bus ID: 04:00.6 
  Sound Server: ALSA v: k5.4.5-arch1-1 
  Device-1: Realtek RTL8111/8168/8411 PCI Express Gigabit Ethernet 
  vendor: Tongfang Hongkong Limited driver: r8169 v: kernel port: f000 
  bus ID: 02:00.0 
  IF: enp2s0 state: down mac: <filter> 
  Device-2: Intel Wi-Fi 6 AX200 driver: iwlwifi v: kernel port: f000 
  bus ID: 03:00.0 
  IF: wlp3s0 state: up mac: <filter> 
  Local Storage: total: 350.27 GiB used: 61.56 GiB (17.6%) 
  ID-1: /dev/nvme0n1 vendor: HP model: SSD EX900 120GB 
  size: 111.79 GiB 
  ID-2: /dev/sda vendor: BIWIN model: SSD size: 238.47 GiB 
  ID-1: / size: 97.93 GiB used: 61.48 GiB (62.8%) fs: ext4 
  dev: /dev/nvme0n1p1 
  ID-2: /boot size: 96.0 MiB used: 86.7 MiB (90.3%) fs: vfat 
  dev: /dev/sda1 
  ID-3: swap-1 size: 11.79 GiB used: 1.0 MiB (0.0%) fs: swap 
  dev: /dev/nvme0n1p2 
  System Temperatures: cpu: 33.5 C mobo: N/A gpu: amdgpu temp: 33 C 
  Fan Speeds (RPM): N/A 
  Processes: 224 Uptime: 12h 12m Memory: 5.80 GiB 
  used: 3.29 GiB (56.7%) Init: systemd Compilers: gcc: 9.2.0 
  Shell: fish v: 3.0.2 inxi: 3.0.37 

Things aren’t perfect, but so far seem to be relatively minor niggles. This list might grow as I use this more (or might shorten with updates or some elbow grease):

  • I’ve read about all kinds of stability and suspend issues with Ryzen mobile laptops, and sleep and suspend seems to work OK, but I have run into at least one compositor issue (which resolved itself when I closed the laptop and reopened it), and the laptop doesn’t like it when you run suspend directly (which seems to bypass the tlp-sleep and systemd-suspend services that do a bunch of cleanup steps.
  • There are a few keyboard niggles. It looks like asus_wmi and wmi_bof are loaded by default (WMI) and hard links about half the shortcuts (sleep, super-lock, network radios, perf-mode, keyboard backlight) and passes through the sound and backlight keys (acpid shows the hard-link events as all the same). One thing that took a bit of figuring out is that Fn-F2 is a super-lock switch which will disable the super/windows key.
  • The lid close works for suspend but not for wakeup (to wake up, hitting the keyboard or power button is required). There are a number of GPP’s labeled in /proc/acpi/wakeup so this may be a future yak-shaving project.

VR and Gaming Virtualization on Linux

A couple months ago I built a new AMD Zen 2 computer. There was nothing wrong with my previous Ryzen 1700 workstation, or the Hades Canyon NUC that I was also swapping off between, but those that have being paying some attention to PC hardware might understand the excitement (Zen 2 marks a milestone, cementing not just AMD’s price/performance and multi-threaded performance lead over Intel, but also matching IPC and introducing the first chiplet-based design to the market). It doesn’t hurt that I’ve done very well on AMD stock the past few years, so I sort of feel justified with some more frequent upgrades.

For the past few years I’ve been running Linux as my primary computing environment, but have had to dual boot into Windows for most of my VR or gaming. One of my goals for this new system was to see if I could do this in a virtual machine and avoid the inconvenient process of rebooting with my new system.

Luckily, due to the interest in the past few years, driven both by enthusiasts and the demands of cloud gaming, virtualization with hardware pass-through has gone from black magic to merely bleeding edge. This is generally referred to as VFIO, referring to how devices are passed through to the virtual machine.

This is a summary of what I needed to do to get a pretty fully working setup (having decades of experience with Linux, but none with VFIO, KVM, QEMU, etc) in August 2019. There are plenty of sharp edges and caveats still, so those looking for support should also check out r/VFIO and the L1T VFIO forums.

VFIO is very hardware dependent (specifically for IOMMU groups).



  • Arch Linux (5.2.5-arch1-1-ARCH) Host – no problems w/ kernel updates
  • Windows 10 Guest (build 1903)
  • qemu-4.0.0-3, libvirt 5.5.0-1, virt-manager 2.2.0-2, edk2-ovmf 20180815-1, ebtables 2.0.10_4-7, dnsmasq 2.80-4, bridge-utils 1.6-3

Motherboard notes

  • The ASUS BIOS currently really sucks (Note: haven’t gotten around to the beta ABBA update), it seems to die in lots of ways it shouldn’t, including boot looping when PBO is enabled, and requiring CSM mode to boot with both an RX 470 and RX 570 I tried (I set everything network to Ignore and everything else to UEFI only as bootup is slowed significantly by this.)
  • I was getting hard shutdowns in mprime – I ended up finding a tip that DRAM Current in the DigiVRM section of the BIOS needs to be set to 130% to prevent this.
  • IOMMU groupings is decent (30 groups, every PCIe slot I’ve tried in its own group) however all the USB controllers are “[AMD] Matisse USB 3.0 Host Controller” and in board groups, see USB section for more details.

Windows Setup

I set up the Windows drive and GPU first by itself (including AMD Chipset drivers, SteamVR, some initial tuning/testing tools) and then shifted the M.2 over and setup Linux on the primary M.2.

Dual boot was as simple as copying \EFI\Microsoft\Boot\bootmgfw.efi over to my systemd-boot EFI partition on my new main M.2 once I did the switch.


The primary guide I used for setup was Arch Wiki’s PCI passthrough via OVMF. Things I needed to do:

  • Enable SVM in AMD CPU Features in the BIOS
  • Add kernel parameters amd_iommu=on iommu=pt
  • Check dmesg for IOMMU groups and use the bash script to check groups (see the above-referenced guide), which worked without issue
  • Added the GPU and USB card PCI IDs to /etc/modeprobe.d/vfio.conf and the proper modules to /etc/mkinitcpio.conf and run mkinitcpio -p linux (or linux-vfio if you want to manually test first)

Besides discovering the CSM issue w/ my Polaris cards, this part was all pretty straightforward.

OVMF-based Guest VM

This took a bit more fiddling than I would have liked. I had to install a few more packages than was listed:

qemu libvirt ovmf virt-manager ebtables dnsmasq bridge-utils openbsd-netcat

I also ran into issues with the OVMF UEFI loading (you are supposed to be able to specify it in /etc/libvirt/qemu.conf by adding it to the nvram var like:

nvram = [

But this didn’t work (you should see it loading a Tiano graphic vs SeaBIOS if it is) and I had to learn and fiddle with virsh -c qemu:///system until I could get it right. I ended clearing the nvram setting, using the edk2-ovmf package’s firmware and manually updated my XML (note virsh will autocorrect/parse things on save so if it’s eating settings you need to change things up):

    <type arch='x86_64' machine='pc-q35-4.0'>hvm</type>
    <loader readonly='yes' type='pflash'>/usr/share/edk2/ovmf/OVMF_CODE.fd</loader>
    <boot dev='hd'/>

With this I was able to create a q35 VM that uses an existing storage device (pointing to the raw device as SATA – I couldn’t get scsi or virtio working, but running CrystalMark gave me 2GB read/writes so I didn’t try too hard to get it booting with the other methods after that). Here’s the XML config, since that part of the setup in the GUI was pretty confusing IMO (I ended up using virsh to edit a lot of XML directly vs the virtmanager GUI):

<disk type='block' device='disk'>
    <driver name='qemu' type='raw' cache='none' io='native'/>
    <source dev='/dev/disk/by-id/nvme-YOUR-DISK-HERE'/>
    <target dev='sda' bus='sata'/>
    <address type='drive' controller='0' bus='0' target='0' unit='0'/>

I added the GPU/HDMI device, USB board and also the Realtek 2.5Gb (which I didn’t use VFIO for since it doesn’t have drivers by default in the default Arch kernel anyway) as devices to the vm. I’ve actually disabled the bridged network so that Windows uses the Realtek device as the bridging seems to put a bit of extra load on my system.

I use the Nvidia workaround so the drivers don’t give guff about virtualization.


While setting things up, I found it frequently easier to use virsh. Here’s a little note on accessing system vm’s with virsh. There are probably some important settings I’m forgetting that I changed, although I did try my best to document while I was working on it, so hopefully not too many things…

Windows Activation

Win10 will complain about activation if you set it up for your bare hardware first, but there is a workaround (1, 2) involving using dmidecode to output your information and matching it up. For me, I added something like this, which seemed to work:

<sysinfo type='smbios'>
      <entry name='vendor'>American Megatrends Inc</entry>
      <entry name='manufacturer'>System manufacturer</entry>
      <entry name='product'>System Product Name</entry>
      <entry name='version'>System Version</entry>
      <entry name='uuid'>[YOUR_UUID]</entry>
      <entry name='manufacturer'>ASUSTeK COMPUTER INC.</entry>
      <entry name='product'>ROG CROSSHAIR VIII HERO (WI-FI)</entry>
      <entry name='version'>Rev X.0x</entry>
      <entry name='serial'>[YOUR_SERIAL]</entry>

You should use the dmidecode output to guide you on this.

CPU Topology

I used AMD μProf to help with mapping out my 3700X (and this writeup on CPU-pinning):

./AMDuProfCLI info --cpu-topology
 Processor  NumaNode     Die    CCX      Core
   0         0           0      0        0   
   0         0           0      0        1   
   0         0           0      0        2   
   0         0           0      0        3   
   0         0           0      0        8   
   0         0           0      0        9   
   0         0           0      0        10  
   0         0           0      0        11  
   0         0           0      1        4   
   0         0           0      1        5   
   0         0           0      1        6   
   0         0           0      1        7   
   0         0           0      1        12  
   0         0           0      1        13  
   0         0           0      1        14  
   0         0           0      1        15  

I ended up deciding to use one whole CCX (and 16GB of RAM) for the virtual machine:

<vcpu placement='static'>8</vcpu>
   <vcpupin vcpu='0' cpuset='4'/>     
   <vcpupin vcpu='1' cpuset='5'/>     
   <vcpupin vcpu='2' cpuset='6'/>     
   <vcpupin vcpu='3' cpuset='7'/>     
   <vcpupin vcpu='4' cpuset='12'/>     
   <vcpupin vcpu='5' cpuset='13'/>     
   <vcpupin vcpu='6' cpuset='14'/>     
   <vcpupin vcpu='7' cpuset='15'/>     
   <emulatorpin cpuset='0-1'/>     
   <iothreadpin iothread='1' cpuset='0-1'/>   

GPU and Display

I wasn’t too worried about this initially since I basically only wanted to use this for VR, so I just need to be able to launch SteamVR, but early on I bumped up the QXL display adapter’s memory to 32768 in the XML so that I was able to run at a higher resolution.

But, because anything that runs on that primary display chugs and it was giving me issues w/ SteamVR Desktop, I ended up disabling the QXL display in Windows entirely and if I have a screen plugged into my 1080Ti it seems to be happier (I tried Looking Glass but it wasn’t very stable and ended up adding a KVM that works well instead).

Valve Index Setup

I used a combination of dmesg and lsusb to track down the USB devices that comprise the Valve Index. For those interested:

devices = [
  ('28de','2613'), # Valve Software Hub
  ('0424','5744'), # Standard Microsystems Hub
  ('0424','2744'), # Standard Microsystems Hub
  ('28de','2102'), # Valve Software VR Radio & HMD Mic
  ('28de','2300'), # Valve Software Valve Index HMD LHR
  ('0424','2740'), # Standard Microsystems Hub Controller
  ('28de','2400'), # Valve Software Etron Technology 3D Camera

Before digging out my USB PCI adapters I wrote a script to create custom udev rules to do a virsh attach-device with appropriate hostdev files, but this didn’t work. I didn’t want to go down the ACS path (1, 2) for USB, which looked pretty hairy, although I did map out the C8H’s USB controllers (using lsusb -t and plugging things in sequentially, included here for interest:

Rear     Front
5 5 3 3  3
5 5 3 3  3
1 1      4
2 1

# Top Left
Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

# Back USB-C
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

# Bottom Left
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
  Bus 001 Device 004: ID 8087:0029 Intel Corp. 
  Bus 001 Device 005: ID 0b05:18f3 ASUSTek Computer, Inc. 
  Bus 001 Device 003: ID 05e3:0610 Genesys Logic, Inc. 4-port hub

# Front Panel USB-C
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
  Bus 004 Device 002: ID 174c:3074 ASMedia Technology Inc. ASM1074 SuperSpeed hub

# Front Panel USB-A, Top Right
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
  Bus 003 Device 002: ID 174c:2074 ASMedia Technology Inc. ASM1074 High-Speed hub
  Bus 003 Device 005: ID 2516:0004 Cooler Master Co., Ltd. Storm QuickFire Rapid Mechanical Keyboard
  Bus 003 Device 006: ID 046d:c53f Logitech, Inc. 

Instead, I used a separate USB card. I had two, and started with a Fresco Logic card – this actually worked after adding it to VFIO, however it doesn’t reset properly so requires a hard reboot to cycle after a VM start/stop. However, I had a Renasas chipset card as well, which worked fine (here’s a guide, and another discussion) – if you’re looking for a USB card, just do a search for uPD720202 on Amazon or whatever your preferred retailer is (although I am using a 2-port uPD720201 without issues).


I was getting some stutters originally (this might have been because I didn’t vfio the USB card originally) but I also went ahead and added <ioapic driver='kvm'/> per this note.
I didn’t do any MSI tuning or switching to invtsc since things seem to be running OK at this point.

KVM Setup

I got an AV Access HDMI 2.0 4 port KVM (4K60P YUV444 18Gbps) for $80 which seems to work pretty well. I had some issues with QXL being detected as the primary monitor (maybe due to lag on switching or something) though and in the end, I used virsh to manually remove the QXL adapter entirely from my XML config, which seems to be fine and solves that (a bunch of VR titles get unhappy if they are not connected to the primary display) – note that <graphics> needs to also be removed along with <video> otherwise a video item gets readded (see here).

TODO: libvirtd startup

For whatever reason, on bootup the systemd service has issues so before I run my VM, I need to systemctl restart libvirtd (which runs fine). This could probably be solved by swapping around the service order or something…

TODO: Dual Boot

Somewhere in between where I started and ended, dual booting got borked (Windows says it can’t find the boot media when booting) – I suspect this might have to do with when I installed some virtio drivers trying to get virtio-scsi to work or maybe an UEFI issue. I will need to get motivated enough to poke sometime, as Ryzen Master nor Thaiphoon Burner work in the vm.

Besides the last to niggles mentioned, this setup has worked pretty darn well for the past couple months. I noticed that recently the Windows Activation message popped up, I’m not quite sure what’s up with that and might need to re-register it at some point, but besides that, and being a bit of a technical workout, after the initial setup, this has been surprisingly trouble free. Fingers crossed (and a potential addendum) after the next BIOS upgrade.